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Reconstructing the Atlantic Overturning Circulation Using
Linear Machine Learning Techniques
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ABSTRACT  This paper examines the potential of reconstructing the Atlantic Meridional Overturning Circulation
(AMOC) using surface data and linear machine learning algorithms. The algorithms are trained on pre-industrial
control simulations with the aim of finding an algorithm that can reconstruct the AMOC robustly across multiple
climate models. Predictors include a combination of surface temperature and surface salinity, as well as a com-
bination of simultaneous and lagged values relative to the AMOC. For most climate models, the correlation skill of
the AMOC reconstructions is greater than 0.7. This reconstruction model involves thousands of predictors and is
therefore difficult to interpret. To improve interpretability, machine learning algorithms were applied to Lapla-
cian eigenvectors, which are an orthogonal set of spatial patterns that can be ordered from largest to smallest
spatial scale. The skill of the new algorithms is comparable to that based on gridded data, but the new algorithms
have the advantage that dimension reduction can be more meaningfully interpreted. The most important predic-
tors were simultaneous and lagged time series of area-averaged surface temperature, and a pattern that measures
the east—west salinity difference over the basin surface lagged in time. These three predictors could recover a sub-
stantial fraction of the total skill from machine learning algorithms for most climate models.

RESUME  [Traduit par la rédaction] Le présent article examine le potentiel de reconstruction de la circulation
méridienne de retournement de I’Atlantique (AMOC) en utilisant des données de surface et des algorithmes liné-
aires d’apprentissage automatique. Les algorithmes sont entrainés sur des simulations de contrdle préindus-
trielles dans le but de trouver un algorithme capable de reconstruire ’AMOC de facon robuste a travers
plusieurs modeles climatiques. Les prédicteurs comprennent une combinaison de la température de surface et
de la salinité de surface, et une combinaison de valeurs simultanées et décalées par rapport a 'AMOC. Pour
la plupart des modéles climatiques, la compétence de corrélation des reconstructions de ’AMOC est supérieure
a 0,7. Ce modéle de reconstruction comprend des milliers de prédicteurs et est donc difficile a interpréter. Pour
améliorer Uinterprétabilité, des algorithmes d’apprentissage automatique ont été appliqués aux vecteurs propres
du laplacien, qui constituent un ensemble orthogonal de motifs spatiaux pouvant étre classés de la plus grande a la
plus petite échelle spatiale. Les compétences des nouveaux algorithmes sont comparables a celles basées sur des
données rectangulaires, mais présentent ’avantage que la réduction de la dimension peut étre interprétée de
manieére plus significative. Les prédicteurs les plus importants étaient des séries chronologiques simultanées et
décalées de la température de surface moyenne de la zone, et un modele qui mesure la différence de salinité
est-ouest a la surface du bassin, décalé dans le temps. Ces trois prédicteurs pourraient récupérer une fraction
substantielle de la compétence totale des algorithmes d’apprentissage automatique pour la plupart des
modeéles climatiques.

KEYWORDS  machine learning; AMOC reconstruction; decadal; CMIP

1 Introduction 1993; Zhang et al., 2019). Coupled atmosphere—ocean models
The Atlantic Meridional Overturning Circulation (AMOC) is indicate that this circulation has significant variability on
a component of oceanic circulation that produces basin-wide multi-decadal time scales (Zhang & Wang, 2013); hence, it
temperature variations in the North Atlantic (Delworth et al., is likely a key factor in monitoring and predicting multi-
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TABLE 1. CMIPS models and variables analyzed in this study.

Model SST SSS
CanESM2 Vv v
CCSM4 v v
CESM1-BGC v v
CNRM-CM5 v v
inmcm4 \/ \/
MPI-ESM-LR Vv v
MPI-ESM-MR v v
MPI-ESM-P v v
MRI-CGCM3 Vv 1o
NorESM1-M v no

decadal climate variations. Unfortunately, direct observations
are either too short (e.g., RAPID) or too infrequent (e.g.,
hydrographic sections) to constrain the variability of the
AMOC on decadal time scales (Frajka-Williams et al.,
2019). Accordingly, various attempts have been made to
reconstruct the AMOC using other observations, especially
sea surface temperature (SST). Most of these reconstructions
are based on a linear function of a small number of predictors,
such as the area-average SST in the North Atlantic, typically
between 40° and 60°N (Latif et al., 2004; Rahmstorf et al.,
2015), or a few empirical orthogonal functions of subsurface
temperature and sea surface height (Mahajan et al., 2011;
Zhang, 2008). Some non-linear reconstruction models based
on a small number of predictors have also been explored
(Ayala-Solares et al., 2018).

A more comprehensive approach to estimating the AMOC
circulation is to derive it from ocean data assimilation. Unfor-
tunately, the AMOC inferred in ocean data assimilation
depends strongly on the ocean model used in the assimilation
(Karspeck et al., 2017). The advent of new, high-quality
observations from floats and satellites has led to reconstruc-
tions based on multiple datasets but only for the most recent
two decades or so (Wunsch & Heimbach, 2006).

Machine learning techniques have emerged as a promising
new approach to learning predictive relations from large data-
sets. It is natural to apply these techniques to the problem of
reconstructing the AMOC. However, as mentioned above,
observational datasets are problematic because they are rela-
tively short or infrequent. In addition, observations contain
variability from both internal variability and external
forcing, and their relative importance in the Atlantic is
much debated (Booth et al., 2012; Zhang et al., 2013). As a
first step, we apply machine learning techniques to reconstruct
the AMOC based on thousands of surface variables simulated
by coupled atmosphere—ocean models. Time series from
model simulations are attractive because they are long (e.g.,
500 years), free of observational errors, and free of forced
variability (when desired). A disadvantage of model simu-
lations is that models are imperfect and differ from each
other. To avoid being biased toward a particular model, we
pursue a multi-model approach. Specifically, the quality of
a reconstruction is judged by how well it recovers the
AMOC in climate models that were not used to train the

machine learning algorithm. By finding an algorithm that skil-
fully reconstructs the AMOC across multiple climate models,
we hope to derive an algorithm that can be trusted to recon-
struct the AMOC from observations. Actual application to
observations requires a separate study to separate forced
and internal variability.

2 Data

The datasets used in this study come from climate model
simulations. Climate models predict the behaviour of the pla-
netary atmosphere, ocean, land, and ice based on the laws of
physics and chemistry. The partial differential equations
derived from these laws are too difficult to solve, so they
are discretized on a grid and supplemented by parameteriza-
tions to account for processes that operate on scales much
shorter than the grid (e.g., clouds and radiation). Even after
these simplifications, the resulting equations involve over a
million variables, are non-linear, and support chaos, so sol-
utions cannot be obtained analytically and must be obtained
by numerical approximations on a computer. The particular
simulations used in this study are pre-industrial control runs
from phase five of the Coupled Model Intercomparison
Project (CMIPS; Taylor et al., 2012). Control simulations
provide realizations of internal variability, which refers to
variability that occurs naturally in the absence of year-to-
year changes in climate forcing. In particular, climate for-
cings, such as greenhouse gas concentration (e.g., CO,) and
solar irradiance, are held constant from year to year. Different
models are initialized at different random initial states, so the
resulting simulations are independent, and no correlation
exists between control simulations. Because only control
simulations are analyzed our reconstructions account only
for internal variability. Forced variability (such as from inter-
annual changes in greenhouse gas concentration and solar
irradiance) will be taken into account in a future study.

Our goal is to reconstruct the AMOC on decadal time
scales, which is a critical time scale for near-term climate
change prediction (Kirtman et al., 2013). A standard approach
is to analyze ten-year running means of the AMOC, but for
some models the autocorrelation function at ten years is at
or near a negative minimum (not shown), in which case a
ten-year mean would average out the corresponding oscil-
latory signal. Accordingly, we analyze running means based
on a five-year window, which is shorter than ten years but
still sufficient to filter out seasonal and year-to-year vari-
ations. Each five-year running mean time series is defined
such that the value at year ¢ equals the mean over years
(t—2,t—1,t,t+ 1,1+ 2). When considering lagged pre-
dictors, the smallest lag that avoids overlapping windows is
five years. Therefore, we consider simultaneous and five-
year lagged values of smoothed time series.

Following standard practice, we define an index of AMOC as
the maximum meridional overturning streamfunction at a par-
ticular latitude. The streamfunction is computed as the north-
ward velocity integrated across the basin and down to the sea
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bottom, typically measured in Sverdrups (10® m? s~!). We
chose 40°N because this latitude is often used to study
decadal AMOC variability (Buckley & Marshall, 2016;
Zhang, 2008).

On decadal time scales, variability in AMOC is related to
buoyancy anomalies (Buckley & Marshall, 2016). Because
buoyancy is a function of temperature and salinity, we con-
sider predictors based on SST and sea surface salinity
(SSS). More precisely, the reconstructions are derived from
five-year running means of annual-mean SST and SSS in
the Atlantic basin between 0°and 60°N. All surface data
were interpolated onto a 2.5° x 2.5° grid, giving 518 cells
in the North Atlantic.

We consider models that have pre-industrial control simu-
lations spanning at least 500 years and include monthly mean
SST and meridional overturning circulation as output
variables. Only ten models in the CMIP5 dataset satisfy
these criteria. Of these, eight models also contain SSS. Only
the last 500 years of each pre-industrial control run were
analyzed. A list of models and available variables is given
in Table 1.

To mitigate model differences, the AMOC index from each
model is standardized to zero mean and to unit variance. Also,
the SST time series at each grid point is centred and then mul-
tiplied by the same model-dependent constant at each grid
point. The constant for each model is chosen so that the
area-averaged variance in that model equals one. Thus, if
T'(x, y) denotes a temperature anomaly, then we define a re-
scaled variable T* = aT’ such that (T*)* = 1, where the bar
denotes the area average over the Atlantic basin between
0°and 60°N. This re-scaling preserves the ratio of variances
between grid points and requires estimating only one
scaling constant per model; SSS is similarly centred and re-
scaled for each model.

3 Methodology

Among the many statistical models that could be used to
reconstruct the AMOC, linear models often provide good
approximations and useful benchmarks for non-linear
models. Accordingly, we consider reconstructions based on
linear models of the form

y=XB +e, (1)

where y is an N-dimensional vector of the AMOC time series,
X is an N x P matrix of predictors, f§ is a P-dimensional
vector of regression coefficients, and € is a random term repre-
senting error in the reconstruction. The predictors X are time
series of either the SST field, SSS field, or both.

To mitigate overfitting, we regularize the regression
problem by imposing constraints on the regression coeffi-
cients. Specifically, we employ a class of regularizations in
which the norm of the regression coefficients is constrained
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Fig. 1 Mean square error (red dotted curve) and associated standard errors
(error bars) of the reconstructed AMOC index from LASSO, as esti-
mated from the cross-validation procedure described in the text (the
precise models and predictors are not important). The 4 giving the
minimum MSE is indicated by the left vertical dotted line. The A
selected by the “one-standard-error rule” is indicated by the right
vertical dotted line. The numbers at the top indicate the number of
predictors with non-zero coefficients in the LASSO model.

to be less than a fixed value c¢. That is, we solve

min (|| y — Xp [*} subjectto R(B) <c, 2)

where c is a tunable parameter and R is defined below. We call
this class of methods /inear machine learning techniques. We
consider two choices for the regularization function R(B),
namely the L; norm

RB) =) 1B, 3)
p

which leads to the Least Absolute Shrinkage and Selection
Operator (LASSO), and the L, norm

RB) =) B}, “)
P

which leads to ridge regression (Hastie et al., 2009). The
above optimization problem is equivalent to

min (|| y — Xp I* + AR(B)}, 5)

where 1 is a regularization parameter that is related to ¢ in
Eq. (2). The term || y — X ||? is a goodness-of-fit measure
that decreases as the fit improves, while the term R(f) is a
penalty function that grows with the norm of the regression
coefficients. The regularization parameter A controls the
overall magnitude of the penalty function. The above optim-
ization problems are solved using the cv.glmnet package in
R (Friedman et al., 2010).

Let M be the total number of models under consideration
(M =10 for SST-only predictors, or M = 8 for SST and
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TABLE 2. Configurations of regularized regression discussed in this

paper.
Lagged Number of

Config. Regression Predictor Predictors Predictors
1 Ridge SST Yes 1036

2 Ridge SST No 518

3 Ridge SSS Yes 1036

4 Ridge  SST & SSS Yes 2072

5 LASSO SST Yes 1036

6 LASSO SST No 518

7 LASSO SSS Yes 1036

8 LASSO  SST & SSS Yes 2072

SSS predictors). One model is identified as the test model and
the remaining models are used for training. We call this
approach Leave-One-Model-Out (LOMO). After picking a
test model, M — 1 models remain for training. Our criterion
for selecting A is as follows. For a given value of A, one
model from the M — 1 models is withheld, the remaining
M — 2 models are used to train the regression model, and
then the regression model is applied to the withheld model
for validation. This procedure is repeated, using each model
from the M — 1 models in turn for validation to generate a
regression prediction for each time step for each of the
M — 1 models. There are a total of N = 4500 time steps for
SST, or a total of N = 3500 time steps for SST and SSS
predictors. Letting &, denote the (cross-validated) error at
the nth time step, the mean square error (MSE) and its stan-
dard error are

1A,
MSE:N;E,,, (6)

1 N 2
tandard Error = | [ —— 2 _MSE) |/N. (7
Standard Error (N—l,;(g" S ))/ (N

An example from the above procedure is shown in Fig. 1. The
minimum MSE is indicated by the left vertical dotted line.
Sometimes, the minimum is shallow and its location
depends sensitively on the sample. We use a more stable
selection rule known as the one-standard-error rule, in
which the “most parsimonious” model (i.e., the model with
larger 1) whose MSE is within a standard error of the
minimum MSE is selected (Hastie et al., 2009). This A is indi-
cated by the right vertical dotted line.

After selecting 4 in the above manner, the regression model
is retrained using all M — 1 training models, and the corre-
sponding P is used to reconstruct the AMOC in the test
model. Note that no information from the test model is used
to inform the regression model. The error of the reconstruc-
tion is measured by

where f comes from M — 1 training climate models, and

(y, X) comes from the test climate model. When MSE > 1,
it means that the MSE is greater than that based on the clima-
tological mean, in which case the reconstruction is said to
have no skill. The mean and standard deviation of the
squared elements of &€ are computed as in Eqs (6) and (7),
but only over the N = 500 time steps of the test model.

4 Results: gridded data

We have examined regularized regressions for a large
number of configurations. For this paper, we consider the
configurations indicated in Table 2. For a single variable
at a single lag, the number of predictors is just the
number of grid points in the North Atlantic, namely 518.
If the instantaneous values of both SST and SSS are the
predictors, then the number of predictors is twice the
number of grid points (e.g., 518 points for SST and SSS).
Similarly, if a single variable and its time-lagged values
are included as predictors, then the number of predictors
is also twice the number of grid points. If the predictors
include both SST and SSS, each with simultaneous and
lagged values, then the number of predictors is four times
the number of grid points. The number of grid points in
each case is listed in Table 2.

We found that reconstructions were better if SST and SSS
predictors lagged AMOC (i.e., the “predictor” value is in the
future relative to the AMOC). This makes sense physically:
an acceleration of the AMOC would advect warmer and
more saline waters from the tropics toward the poles,
leading to a positive anomaly in SST and SSS following the
acceleration of the AMOC. In the following, we present
results only for combinations of simultaneous or lagged pre-
dictors. This means that these AMOC reconstructions are
not predictions but reconstructions based on current and sub-
sequent data.

We first discuss a reconstruction based on one of the con-
figurations in Table 2. This will illustrate the degree to
which machine learning methods can reconstruct the
AMOC. One of the best reconstructions is obtained using
both SST and SSS predictors, each with simultaneous and
lagged values (configuration #4 in Table 2). Time series of
AMOC reconstructions in individual climate models are
shown in Fig. 2. The match between actual and reconstructed
AMOCs is remarkable given that no data from a climate
model are used as training data to reconstruct the AMOC in
that climate model. For readers who want a more quantitative
argument, the precise p-value is difficult to quantify because
of serial correlation, but a crude approach is to estimate the
degrees of freedom using the “effective number of indepen-
dent samples” (Thiébaux & Zwiers, 1984),

—1
50
Neffective = N(l +2 Zﬁ"') >

=1

where p, is the sample autocorrelation at 7 years, N = 500,
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Reconstructions of AMOC
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Fig. 2 The AMOC index in each model (black) and the reconstructed AMOC index (red) based on SST and SSS, each with simultaneous and five-year lagged
values (corresponding to configuration #4 in Table 2). For each model, the reconstruction algorithm is trained on all other models. The correlation between

the two time series is indicated in parentheses next to the model name.

and the upper limit of the sum is cut off at 50 years; Nefrective
depends on the model, but the smallest value is found to be 32,
which corresponds to a correlation 5% significance threshold
of 0.35. The correlations shown in Fig. 2 each exceed this
value, indicating that the probability of exceeding this value
by random chance for all eight models is very small.

The regression coefficients for configuration #4 are shown
in Fig. 3 for the case in which MPI-ESM-LR is left out of
training. Admittedly, the structure of the coefficients is diffi-
cult to interpret, which is not an uncommon situation in
machine learning. In general, interpreting regression coeffi-
cients is not straightforward because the value of one

coefficient depends on all the others. Furthermore, the
spatial structure of the coefficients is sensitive to the choice
of model that is left out. In the following, we attempt to under-
stand how the reconstruction works by changing the configur-
ation and examining the resulting change in skill.

The error statistics for different configurations and test
models are shown in Fig. 4. As a reminder, the regression
model is trained on all but one model, then the resulting
regression coefficients are used to predict the AMOC in the
withheld model, and the error statistics shown in Fig. 4 are
computed only over the withheld model. Each algorithm is
based on ridge regression using gridded data of either SST,

ATMOSPHERE-OCEAN 60 (5) 2022, 541-553  https://doi.org/10.1080/07055900.2021.1947181
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Regression Coefficients for Reconstructing AMOC
RIDGE; grid; MPI-ESM-LR

SST (lag=0) SSS (lag=0)
|
— '
F . -
‘h' =< K, &
e > -
’ 8
SST (lag=5) SSS (lag=5)

of 1.

= (

-0.014

-0.0098

-0.0056
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0.0098 0.014

|
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Fig. 3 Regression coefficients in the North Atlantic (0°-60°N) for configuration #4 in Table 2, trained on all models except MPI-ESM-LR. The coefficients are

non-dimensional because of variable normalization.

SSS, or both. The results for LASSO are nearly the same and
therefore not shown. It is immediately apparent that the
amount of variance explained by the reconstruction varies
considerably with validation model. Adding salinity predic-
tors to temperature does not always improve the reconstruc-
tion in a cross-model-validation sense (i.e., the blue error
bars are not always below the red error bars). On the other
hand, reconstructions based on SST only tend to be better
than those based on SSS only (i.e., red error bars tend to lie
below the gold error bars), and adding time-lagged predictors
tends to improve the reconstruction (i.e., red error bars tend to
lie below the green error bars).

The best reconstructions (in terms of correlation skill or
mean square error) were obtained for the two NCAR models,
namely CCSM4 and CESM1-BGC. One might wonder if this
is because the two models are very similar. To check this, we

recomputed the above results while leaving out CESMI-
BGC from the entire analysis. In this case, the skill of the
reconstruction for CCSM4 dropped; the correlation dropped
from 0.85 to 0.76, while the mean square error increased
from 0.30 to 0.45. The reconstruction skill for the remaining
models was nearly the same. This result is consistent with
other studies that have shown that models from the same insti-
tution tend to behave similarly and therefore do not “diversify”
training data as much as adding models from different insti-
tutions (Knutti et al., 2013).

5 Interpreting the model

In our application, the regression model (Eq. (1)) has thou-
sands of predictors and is, therefore, difficult to interpret.
We seek a comparable reconstruction model that is easier to

ATMOSPHERE-OCEAN 60 (5) 2022, 541-553  https://doi.org/10.1080/07055900.2021.1947181
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Mean Square Error of AMOC Reconstructions in CMIP5 Models

. |
o _ l
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CanESM2 —
CNRM-CM5 —
inmcm4 —
MPI-ESM-LR —

MPI-ESM-MR —

CCSM4

MPI-ESM-P —
MRI-CGCM3 —
NorESM1-M —

CESM1-BGC -

Fig.4 Mean square error of reconstructing the AMOC index in the CMIP5 model indicated on the x-axis. Training data are based on all models except the model
on the x-axis whose AMOC is being reconstructed (LOMO). Error bars show MSE + one standard error. The reconstructions are derived from ridge
regression and the gridpoint predictors are SST and SSS, each with simultaneous and five-year lagged values (blue); simultaneous and five-year
lagged SST (red); simultaneous-only SST (green); simultaneous and five-year lagged SSS (gold).

interpret. That is, we seek a comparable model with just a few
predictors. The LASSO method is useful for this purpose
because it sets some regression coefficients exactly to zero,
which unambiguously identifies the corresponding predictors
as unimportant. In our application, this means that LASSO
assigns non-zero regression coefficients only to isolated grid
points, yielding a spotty regression map (not shown). Unfor-
tunately, the specific grid points chosen by LASSO differ for
different test models. This is not surprising because SST and
SSS are spatially correlated fields, so very similar predictions
can be obtained from predictors that are displaced by only a
few degrees of latitude or longitude relative to each other.
An alternative approach is to use large-scale patterns as
predictors. With this aim, we used a novel approach based
on the eigenvectors of the Laplace operator. The eigenvectors
of the Laplace operator are a complete set of orthogonal
vectors that can be ordered by a measure of length scale. Fam-
iliar examples of Laplacian eigenvectors include the spherical
harmonics and the sines and cosines of a Fourier series. In this
paper, we use eigenvectors of the Laplace operator over the
Atlantic Ocean basin between 0° and 60°N, computed using
the method of DelSole and Tippett (2015). The resulting
leading Laplacian eigenvectors are shown in Fig. 5. The
first eigenvector is a uniform pattern, and projecting data
onto the first Laplacian eigenvector is equivalent to taking
the area-weighted average in the basin. In the case of SST,
the time series for the first Laplacian eigenvector is merely
an index of Atlantic Multidecadal Variability (AMV). The
second and third eigenvectors are dipoles that measure the

large-scale gradient across the basin. Subsequent eigenvectors
capture smaller scale patterns. Following Laprise (1992), we
define the characteristic length scale of the mth Laplacian
eigenvector as 6,, = ma/k,, where a is the radius of the
Earth, and %, is the associated total wavenumber. A total of
M = 100 Laplacian eigenvectors are chosen, which corre-
sponds to resolving length scales greater than about 500 km.
The time series for an eigenvector is obtained by projecting
model output onto the eigenvector.

To impose smooth structure, the coefficients of small-scale
eigenvectors should be penalized more than coefficients for
large-scale eigenvectors. Such scale-selective penalization
can be incorporated through generalized norms. For instance,
a generalized L; norm could be

RB) = wlB,I. ©)

where wy, ..., w, are suitable positive weights. Penalizing
smaller-scale structures more than larger-scale structures corre-
sponds to choosing weights w,, that increase with decreasing
6,,. To explore specific forms for this relation, we first
examine the variance spectrum of the Laplacian eigenvectors.
Figure 6 shows the percentage of variance of SST and SSS
explained by Laplacian eigenfunctions in each model as a func-
tion of length scale. Just as is found in the atmosphere (Nastrom
& Gage, 1985), the variance of temperature tends to be concen-
trated in large-scale structures and decreases with length scale
according to a —3 power law (this appears to be the first
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Laplacian 1

Laplacian 3

Laplacian 2

Fig. 5 Laplacian eigenvectors 1, 2, 3, and 4 over the North Atlantic between the equator and 60°N, where dark red and dark blue indicate extreme positive and

negative values, respectively.

confirmation of this power law in realistic ocean models).
Thus, the decrease in variance with decreasing length scale pro-
vides a natural penalty function. However, in most LASSO and
ridge regression packages (e.g., cv.glmnet), each predictor is
standardized by its standard deviation prior to solving the mini-
mization problem (Eqg. (5)). As a result of this standardization,
the coefficients for the first and the hundredth are penalized
equally, which undercuts our goal to penalize small scales
more than large scales. To penalize small-scale structures
more than large-scale structures, the weights w,, could be set
equal to the inverse standard deviation, which would depend

TABLE 3. Most important predictors in LASSO using Laplacian
eigenvectors under LOMO and scale-selective regularization.
The predictors are ranked by the number of times each one is
selected for A values greater than or equal to the value selected
by cross-validation.

Rank Variable Lag (yrs) Laplacian
1 SST 0 1
2 SST 5 1
3 SSS 5 3

on the model. To avoid model-dependent weights, we use the
empirical function

8

1O = Go00je7 +7°

(10)

which is shown as the blue curve in Fig. 6 (after normalizing by
the total sum). As can be seen, the empirical function gives a
reasonable fit to the model-generated variance spectra. We
have also explored powers of f(0), including the square root,
corresponding to standard deviation, but these did not give sub-
stantially different results. Accordingly, we show results only
for w,, = 1/f(6,,). With this choice, wig/w; = 100 (i.e., the
coefficient for the 100th eigenfunction is penalized about 100
times more strongly than that of the first). We call this approach
a scale-selective regularization.

Under the one-standard error rule described in Section 3,
LASSO typically selects 30 or more Laplacian eigenvectors
(not shown), which is still too many to interpret. To rank the
predictors in order of importance, we count the number of
times each predictor is selected for A values greater than or
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Fig. 6 Temporal variance of Laplacian eigenvectors for SST (top) and SSS (bottom) over the North Atlantic from CMIP5 pre-industrial control runs (grey
curves). For reference, a line corresponding to the “k~3 power law” is shown in red (k is the total wavenumber), and the blue curve shows the empirical

function Eq. (10).

equal to the selected value. For instance, in the case of Fig. 1,
we count the number of times LASSO selects a given predictor
for each of the regression models to the right of the selected 4.
The top three predictors are shown in Table 3 and correspond to
the first Laplacian eigenvector for SST at zero and a five-year
lag, and the third Laplacian eigenvector for SSS at a five-year
lag. The first two are essentially AMV indices. The third is an
index of the east—west gradient of salinity. To gain insight into
why this latter pattern was chosen, we show in Fig. 7 the
regression pattern between AMOC and the five-year lagged
SSS. Each pattern exhibits an east-west gradient, with some
models preferring a positive eastern signal and others (e.g.,

NCAR models) preferring a negative western signal. Such
dipole structures in the AMOC-SSS relation are commonly
seen in similar analyses (Cheng et al., 2013, Fig. 6) (Zhang
et al., 2019, their Fig. 9).

Without scale-selective regularization, the top ten predic-
tors include some high-order Laplacian eigenvectors (e.g.,
the 95th eigenvector; not shown), but the skill is nearly the
same as with scale-selective regularization.

Having identified the important predictors, the associ-
ated coefficients are computed using ordinary least
squares (OLS). The coefficients are computed based on
all but one dynamical model and then used to reconstruct

ATMOSPHERE-OCEAN 60 (5) 2022, 541-553  https://doi.org/10.1080/07055900.2021.1947181
Canadian Meteorological and Oceanographic Society



550 / Timothy DelSole and Douglas Nedza

Regression Pattern Between AMOC and SSS (lag=5)
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Fig.7 Regression coefficient between the AMOC index and the local, five-year lagged SSS for each CMIP5 model. The coefficients are dimensionless because of

variable normalization, but the contour levels are the same in each panel.

the AMOC in the withheld model. The MSEs of the
reconstructions are shown in Fig. 8. Also shown are the
reconstructions based on LOMO. For most models, a sub-
stantial fraction of the total skill in LOMO can be
obtained from two to three predictors. Because these
models may be of broad interest, we give the full recon-
struction model explicitly:

AMOC(f) = 1.14 AMV(1) + 0.77AMV(t +5)  (11)

AMOC(f) = 1.02 AMV(?) + 0.59 AMV(z + 5)
— 0.89SSS-L3(t + 5), (12)

where AMV(z) is the re-scaled amplitude of Laplacian 1,
which is merely the average Atlantic SST between 0° and
60°N and can be identified as a re-scaled AMV index,
and SSS-L3 is the third Laplacian eigenfunction for
SSS. The coefficients are the average OLS coefficients
obtained from each LOMO training. For reference,
Fig. 9 shows time series of the reconstructed AMOC
from Eq. (12). We remind the reader that SST and SSS
have been rescaled separately for each model so that
the sum total variance in the North Atlantic equals one.
We further remind the reader that the predictors include
lagged values of AMV and SSS, which involve “future”
information relative to the AMOC time series. The OLS
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Fig.8 Mean square errors of AMOC reconstructions as a function of validation model (x-axis). For each validation model, the first three dots joined by lines show
reconstructions from ordinary least squares by successively including the three predictors in Table 3. The second and third dots correspond to Eqs (11) and
(12), except model-dependent coefficients are used in the figure. The square at the end of each curve shows the mean square error of LOMO using LASSO
with 100 simultaneous and 100 lagged Laplacian eigenvectors of temperature and salinity.

model performance is close to that of LASSO except for
the two NCAR models. In the latter cases, even using the
top ten predictors in OLS does not substantially improve
the reconstruction.

6 Conclusions

This paper examined machine learning algorithms for recon-
structing an AMOC index based on surface data. The algorithms
were trained on pre-industrial control simulations from CMIP5
models. As such, the algorithms only account for internal varia-
bility. Our goal was to find a reconstruction algorithm that
works well in models that were not used for training. Accord-
ingly, we explored several different configurations including
LASSO and ridge regression, predictors based on SST and
SSS, and simultaneous and lagged predictors. There was a
general tendency for out-of-model skill to be best using both
simultaneous and lagged values of SST and SSS. Time series
from this reconstruction algorithm capture much of the multi-
decadal variance of the AMOC although the fraction of variance
explained depends on the CMIP5 model used for validation.

The spatial structure of regression coefficients is generally
difficult to interpret. To obtain a simpler model, we derived
regression models based on a small number of Laplacian
eigenvectors. The most important Laplacian eigenvectors
were identified by counting how often LASSO selected
them over a range of regularization parameters. The first
two predictors were simultaneous and lagged values of
AMV indices, and the third predictor was the lagged SSS pro-
jected onto the third Laplacian, which measures the east—west
gradient across the Atlantic basin. These three predictors
could recover a substantial fraction of the total skill from reg-
ularized regression for most CMIP5 models.

Ultimately, our goal is to reconstruct the AMOC based on
observational data. Without any strong reason to believe one
dynamical model is better than another, we desire a recon-
struction algorithm that works well across all the dynamical
models. We found that LOMO yielded a reconstruction that
was always skilful in the withheld model. From the simplified
models, Eqs. (11) and (12), one can anticipate that a recon-
struction derived from observational data would be a
smoothed version of the AMV index. However, the observed
AMYV index also contains a forced component that should be
removed before reconstructing the AMOC based on our
model. Unfortunately, the precise forced component of the
AMOC is a matter of debate and will be considered in
future work.

To our knowledge, past reconstructions have not utilized
lagged predictors and have not combined temperature and sal-
inity data. Our results suggest that including such information
can improve reconstructions of the AMOC.
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